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The formula in question is 

<r2(£ in /») = [ » ( n - l ) ( 4 / + 2 - » ) ( 4 / + 2 - » - l ) / 2 ( 4 / ) ( 4 i - l ) ] a a ( E in J2). 

The proof makes use of probability matrices rather than of fractional parentage coefficients. 

I. INTRODUCTION 

THE mean interaction energy in an electronic con
figuration ln is known to be related to the mean 

interaction energy in the configuration I2 by the simple 
rule 

»(Eml») = (n\(EmP), (1.1) 

where it is understood that the two-electron interactions 
have the same strength in the configurations ln and I2. 
Moszkowski1 has suggested the following formula re
lating the mean-square deviation of the interaction 
energy from its mean value in ln with the corresponding 
quantity in I2: 

n\ /No—n\ 

o-2(Ein/n) = -

(V) 
-<r2(E in I 2 ) , (1.2) 

II. PROBABILITY MATRICES 

Let P(/mr^ n-mr 2 | / nr) denote the probability that, 
when an ^-electron system is in the state lnT, a given 
m-electron subsystem of it will be found in the state 
lmTi and the complementary (n—m)-electron subsystem 
will be found in the state ln~~mT2. Clearly, 

p(imTii»-mT21 /nr)=p(/n-™iymri | inv) 
= K/mri/w-»r2l/

wr)|2, (2.1) 

the square of a cfp (coefficient of fractional parentage). 
The quantity 

p(/«ri|/nr)=i;^mri/w-mr2|/nr) (2.2) 

is the probability that a given m-electron subsystem 
will be found in the state lmTi when its parent ^-electron 
system is known to be in the state I\ The quasiunitarity 
of the cfp matrices ensures that 

where No=4/+2, the number of electrons in a complete 
/ subshell. Moszkowski verified Eq. (1.2) in a few 
particular cases and gave an ingenious plausibility 
argument for it, based on the method of second 
quantization. 

It is natural to attempt a proof by expressing a2 (E 
in ln) in terms of two-electron matrix elements, by 
means of the now-standard techniques introduced by 
Racah.2 However, because one has to deal with the 
squares of interaction matrix elements (or the matrix 
elements of squares of interaction operators), this ap
proach quickly leads to rather forbidding complications. 
An alternative and, as it turns out, much simpler 
approach, followed here, employs probability matrices 
of a kind introduced by Bacher and Goudsmit3 in 1934. 

* This work has been supported in part by the National Science 
Foundation. 

1 S. A. Moszkowski, Progr. Theoret. Phys. (Kyoto) 28,1 (1962). 
2 G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943); referred 

to in subsequent footnotes by the roman numerals II, III. 
3 R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934). 

£ P(l™Tll
n~™Y21 lnT) = £ P(lmT! |/-T)= 1. (2.3) 

rir2 ri 

The probabilities P(/mTi|/nr) contain less information 
than the corresponding cfp's—much less if n—m>2— 
but have simpler properties, of which the three following 
are especially useful. 

(i) Composition law. By elementary probability 
theory, 

E P(Z"Ti I lrT2)P(lrT21 lnV) = P(/*Ti | lnT) 
r2 

(m<r<n), (2.4) 

where the sum runs over all states T2 of ln (in the sequel 
all such sums will be understood to be complete). Start
ing with the probabilities P(ln~lTi\lnT), one can 
generate all the probability matrices ||P(£"Ti|/nr)|| by 
successive applications of Eq. (2.4) with r = w + L 
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(it) Completeness. Let co(r)[=(2S+l)(2Z,+ l ) ] de- If Gm is diagonal in the T scheme, it follows from (2.9) 
note the statistical weight (degeneracy) of a state lnT. and (2.1) that 
The total number of nondegenerate states of ln is 

( ° J. Hence, the probability of realizing the degenerate //np [ £ I /«p\ 

state lnY is 

P(Z»r) = « ( r ) / ( ° ) . (2.5) /n\ 

Now, by elementary probability theory, the joint prob- ~ vn* IGm\lnT) 
ability P(ab) of two states a, b is given by ( \ 

P(ab) = P(a\b)P(b); (2.6) ^ 2 ' 
and 

P(*) = Z P(fib), P(b) = j:P(ab). (2.7) 

Hence, 

£ p(/»ri|/»r)P(/»r)=i: P(My»r)=P(z»r1). (2.8) =~~T E>^
mri|G«|/mri)P(/«r1/'

M»r2|/nr) (3.2) 

\ 2 / 

0 
(m) Relation between probabilities in complementary 

configurations. To every state / n r there corresponds a 
unique state of the complementary configuration lNo~n

y 

which we may indicate by the same label I\4 The 
decomposition 0 

\inT)= E |/mri)|/n-wr2)</2ri/n-«r2l/
nr) (2.9) /m\ n 

rir2 0 
E<fTi I Gro I /»r,>P(/»ri I l"V). (3.2b) 

corresponds to the decomposition 

|Fo- m r i )= £ | F ° - T ) | / » - r 2 > Multiplying Eq. (3.2b) by i>(/-r) and summing over r , 
w //ATo-n-p/n-̂ p Ti;ivr0_wr \ /^ <y\ we obtain, with the help of the completeness relation 

(2.8), 
Racah5 has given a relation between the cfp's that occur 
in the last two equations for the case m=l, from which \__v-/ 
a relation valid for any value of m can easily be derived. M(kw)==2^nI | Gn | l

nl )r{rT) 
The same relation (apart from a phase factor) can be 
derived from elementary probability considerations, as 
follows. Let P(abc) signify the joint probability of the 
three states, a, b, c. Clearly, 0 

P(lmT1l
n-mT2l

nT) = P(l^-nTln-mT2l
N^mT1). (2.10) = £<FTi|GTO|Zmri)P(/«ri) 

It follows from (2.6) that 

p(/wri/w-wr2|/
nr)P(/wr) 

= p{lN,-nTln-mV2 | ̂ - ^ j ^ p ^ o - m p ^ ( 2 . 1 1 ) 

= p(lNo-nTln-mT2 j / ^ - m p ^ p ^ ^ ) ? 

which is the desired relation. 

0" 
0 

-M(Gm), (3.3) 

0 III. PROOF OF MOSZKOWSKI'S FORMULA 

Let Gn denote a symmetric sum of two-electron inter-
actions *<, among n electrons: w h i c h c o n t a i n s E q ( u ) a g ft g p e d a l c a g e T f a e „ f l u c t u a t_ 

Gn= 5Z g#. (3.1) ing part" of Gn is defined as 
all pairs 

4 See Ref. 2, paper II . ~ 
5 .See Ref. 2, paper III, Gn=Gn—n(Gn). (3.4) 
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Subtracting (3.3) from (3.2), we obtain E (^ | Gn \ l
nT)(l«T' \ Qn \ lnT')P(lnT') 

T'Y2' 

/n\/N0—n\ 

0 
0 

* ) 

"£(lmT1\Gm\lmT1)P(lnT1l
1^Ti\lnT). (3.5) / ^ ° 2 

2 

E (Wil^lPriXPri'l^lWi') 

rir2 

/N0—2\ ivry 

XP(/Ti)p(/2ri7n-2r2
,|/nr). (3.io) 

We consider two special cases of the last equation: We now seek to invert the probability matrix 
n=n, m=2'} and n=N0—2, m=N0—n. Thus, we re- | |P ( / 2 r i / n - 2 r 2 | / n r ) | | . In order to do this, we must first 
quire both Gn and G2 to be diagonal in the V scheme. In make it into a square matrix by adjoining the columns 
the first case, corresponding to nonantisymmetric states V. This can 

always be done, since the cfp matrix | | ( / 2 iy n -" 2 r 2 | / n r ) | | 

(lnY IF I lnY\ — (n\ V / /2r ' IF I / 2 r f\ c a n a * w a y s ^ e e^e(^ o u t w * t n e x t r a columns to make it a 
\ 2 / I Y I Y t r u e unitary matrix. Moreover, one can always ensure 

that the augmented probability matrix is nonsingular if 
XP( / 2 lY / n - 2 r 2 ' | lnY); (3.6) the columns that correspond to antisymmetric states V 

in the second, are linearly independent. If this were not so, however, 
one could construct a linear combination of matrix 

(ZiVo-2r11 QNo_21 F o - 2 r i ) elements (lnY \ Gn \ l
nT) that would vanish identically for 

every interaction gn that is diagonal in the T scheme 
—which is impossible. 

Let 0 ( / 2 IV n - 2 r 2 | / ? T) denote an element of the in-
£ (lNo-nT' | Gisro-n | lN*~nr') v e r s e o f t h e m a t r i x | |P(Z2ri^-2r21 Znr)||. Then, 

N0—n\ r'Tz 

E P(W"-2r21 /-r)<3(/2r17
w-2r2

/1 inv) 
r 

= ^rir1
/5r2r2

/, (3.11a) 

(T) 

E P(/2ri/"-2r21 /"r)<2(/2iV--2iY | inV) 

= W * r r ' , (3.Hb) 

err 
XP(F»-"r7»-2r2|F('-2r1). (3.7) 

We now assume that, for any value of m, 

(lmT\Gm\lmT)=±(lN^mT\GNo-m\lNo~mT), (3.8) 
T2 

where the sign depends only on the nature of the inter- * / * , (z 11 ) 
action and not on the value of m. This relation is valid r i F l 

for a wide variety of interactions, including the Coulomb M u l t i p l y i n g E q . ( 3 . 1 0 ) b y Q^Y.l^T, \ l«T) and sum-
interaction and the spin-orbit interaction (taken sepa- m i o y e r r r r w e b t ; w i t h ft h d o f ( 3 n ) 

rately). With the help of (3.8) and (2.11) we may write 6 F 

Eq. (3.7) in the form 231 </»r | gre | ; « r ) 12p(/»r) 

(/2r1|G2|;2r1>p(/2r1) / w N / i V o _ w 

CD 
' ) fN0-2\ \2/\ 2 

El</2ri|G21/2ri)12P(/2rx) (3.12) 
E (inr'\Gn\i

nT')P(inT') 
/N0—n\ r 'ry 

X P t f T i / ^ r i ' l / T ' ) . (3.9) 

or 

This relation expresses the two-electron matrix elements a ^ n' ~^7 _ ~. 
as linear combinations of the ^-electron elements, while ( ) 
Eq. (3.6) does just the reverse. \ 2 / 

Multiplying (3.6) by the transpose of Eq. (3.9), we 
obtain which is Moszkowski's formula. 

/n\/No—n\ 

\2/\ 2 
<r*(Gn) = *2(Gz), (3.13) 


