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The formula in question is 

<r2(£ in /») = [ » ( n - l ) ( 4 / + 2 - » ) ( 4 / + 2 - » - l ) / 2 ( 4 / ) ( 4 i - l ) ] a a ( E in J2). 

The proof makes use of probability matrices rather than of fractional parentage coefficients. 

I. INTRODUCTION 

THE mean interaction energy in an electronic con­
figuration ln is known to be related to the mean 

interaction energy in the configuration I2 by the simple 
rule 

»(Eml») = (n\(EmP), (1.1) 

where it is understood that the two-electron interactions 
have the same strength in the configurations ln and I2. 
Moszkowski1 has suggested the following formula re­
lating the mean-square deviation of the interaction 
energy from its mean value in ln with the corresponding 
quantity in I2: 

n\ /No—n\ 

o-2(Ein/n) = -

(V) 
-<r2(E in I 2 ) , (1.2) 

II. PROBABILITY MATRICES 

Let P(/mr^ n-mr 2 | / nr) denote the probability that, 
when an ^-electron system is in the state lnT, a given 
m-electron subsystem of it will be found in the state 
lmTi and the complementary (n—m)-electron subsystem 
will be found in the state ln~~mT2. Clearly, 

p(imTii»-mT21 /nr)=p(/n-™iymri | inv) 
= K/mri/w-»r2l/

wr)|2, (2.1) 

the square of a cfp (coefficient of fractional parentage). 
The quantity 

p(/«ri|/nr)=i;^mri/w-mr2|/nr) (2.2) 

is the probability that a given m-electron subsystem 
will be found in the state lmTi when its parent ^-electron 
system is known to be in the state I\ The quasiunitarity 
of the cfp matrices ensures that 

where No=4/+2, the number of electrons in a complete 
/ subshell. Moszkowski verified Eq. (1.2) in a few 
particular cases and gave an ingenious plausibility 
argument for it, based on the method of second 
quantization. 

It is natural to attempt a proof by expressing a2 (E 
in ln) in terms of two-electron matrix elements, by 
means of the now-standard techniques introduced by 
Racah.2 However, because one has to deal with the 
squares of interaction matrix elements (or the matrix 
elements of squares of interaction operators), this ap­
proach quickly leads to rather forbidding complications. 
An alternative and, as it turns out, much simpler 
approach, followed here, employs probability matrices 
of a kind introduced by Bacher and Goudsmit3 in 1934. 

* This work has been supported in part by the National Science 
Foundation. 

1 S. A. Moszkowski, Progr. Theoret. Phys. (Kyoto) 28,1 (1962). 
2 G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943); referred 

to in subsequent footnotes by the roman numerals II, III. 
3 R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934). 

£ P(l™Tll
n~™Y21 lnT) = £ P(lmT! |/-T)= 1. (2.3) 

rir2 ri 

The probabilities P(/mTi|/nr) contain less information 
than the corresponding cfp's—much less if n—m>2— 
but have simpler properties, of which the three following 
are especially useful. 

(i) Composition law. By elementary probability 
theory, 

E P(Z"Ti I lrT2)P(lrT21 lnV) = P(/*Ti | lnT) 
r2 

(m<r<n), (2.4) 

where the sum runs over all states T2 of ln (in the sequel 
all such sums will be understood to be complete). Start­
ing with the probabilities P(ln~lTi\lnT), one can 
generate all the probability matrices ||P(£"Ti|/nr)|| by 
successive applications of Eq. (2.4) with r = w + L 
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(it) Completeness. Let co(r)[=(2S+l)(2Z,+ l ) ] de- If Gm is diagonal in the T scheme, it follows from (2.9) 
note the statistical weight (degeneracy) of a state lnT. and (2.1) that 
The total number of nondegenerate states of ln is 

( ° J. Hence, the probability of realizing the degenerate //np [ £ I /«p\ 

state lnY is 

P(Z»r) = « ( r ) / ( ° ) . (2.5) /n\ 

Now, by elementary probability theory, the joint prob- ~ vn* IGm\lnT) 
ability P(ab) of two states a, b is given by ( \ 

P(ab) = P(a\b)P(b); (2.6) ^ 2 ' 
and 

P(*) = Z P(fib), P(b) = j:P(ab). (2.7) 

Hence, 

£ p(/»ri|/»r)P(/»r)=i: P(My»r)=P(z»r1). (2.8) =~~T E>^
mri|G«|/mri)P(/«r1/'

M»r2|/nr) (3.2) 

\ 2 / 

0 
(m) Relation between probabilities in complementary 

configurations. To every state / n r there corresponds a 
unique state of the complementary configuration lNo~n

y 

which we may indicate by the same label I\4 The 
decomposition 0 

\inT)= E |/mri)|/n-wr2)</2ri/n-«r2l/
nr) (2.9) /m\ n 

rir2 0 
E<fTi I Gro I /»r,>P(/»ri I l"V). (3.2b) 

corresponds to the decomposition 

|Fo- m r i )= £ | F ° - T ) | / » - r 2 > Multiplying Eq. (3.2b) by i>(/-r) and summing over r , 
w //ATo-n-p/n-̂ p Ti;ivr0_wr \ /^ <y\ we obtain, with the help of the completeness relation 

(2.8), 
Racah5 has given a relation between the cfp's that occur 
in the last two equations for the case m=l, from which \__v-/ 
a relation valid for any value of m can easily be derived. M(kw)==2^nI | Gn | l

nl )r{rT) 
The same relation (apart from a phase factor) can be 
derived from elementary probability considerations, as 
follows. Let P(abc) signify the joint probability of the 
three states, a, b, c. Clearly, 0 

P(lmT1l
n-mT2l

nT) = P(l^-nTln-mT2l
N^mT1). (2.10) = £<FTi|GTO|Zmri)P(/«ri) 

It follows from (2.6) that 

p(/wri/w-wr2|/
nr)P(/wr) 

= p{lN,-nTln-mV2 | ̂ - ^ j ^ p ^ o - m p ^ ( 2 . 1 1 ) 

= p(lNo-nTln-mT2 j / ^ - m p ^ p ^ ^ ) ? 

which is the desired relation. 

0" 
0 

-M(Gm), (3.3) 

0 III. PROOF OF MOSZKOWSKI'S FORMULA 

Let Gn denote a symmetric sum of two-electron inter-
actions *<, among n electrons: w h i c h c o n t a i n s E q ( u ) a g ft g p e d a l c a g e T f a e „ f l u c t u a t_ 

Gn= 5Z g#. (3.1) ing part" of Gn is defined as 
all pairs 

4 See Ref. 2, paper II . ~ 
5 .See Ref. 2, paper III, Gn=Gn—n(Gn). (3.4) 
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Subtracting (3.3) from (3.2), we obtain E (^ | Gn \ l
nT)(l«T' \ Qn \ lnT')P(lnT') 

T'Y2' 

/n\/N0—n\ 

0 
0 

* ) 

"£(lmT1\Gm\lmT1)P(lnT1l
1^Ti\lnT). (3.5) / ^ ° 2 

2 

E (Wil^lPriXPri'l^lWi') 

rir2 

/N0—2\ ivry 

XP(/Ti)p(/2ri7n-2r2
,|/nr). (3.io) 

We consider two special cases of the last equation: We now seek to invert the probability matrix 
n=n, m=2'} and n=N0—2, m=N0—n. Thus, we re- | |P ( / 2 r i / n - 2 r 2 | / n r ) | | . In order to do this, we must first 
quire both Gn and G2 to be diagonal in the V scheme. In make it into a square matrix by adjoining the columns 
the first case, corresponding to nonantisymmetric states V. This can 

always be done, since the cfp matrix | | ( / 2 iy n -" 2 r 2 | / n r ) | | 

(lnY IF I lnY\ — (n\ V / /2r ' IF I / 2 r f\ c a n a * w a y s ^ e e^e(^ o u t w * t n e x t r a columns to make it a 
\ 2 / I Y I Y t r u e unitary matrix. Moreover, one can always ensure 

that the augmented probability matrix is nonsingular if 
XP( / 2 lY / n - 2 r 2 ' | lnY); (3.6) the columns that correspond to antisymmetric states V 

in the second, are linearly independent. If this were not so, however, 
one could construct a linear combination of matrix 

(ZiVo-2r11 QNo_21 F o - 2 r i ) elements (lnY \ Gn \ l
nT) that would vanish identically for 

every interaction gn that is diagonal in the T scheme 
—which is impossible. 

Let 0 ( / 2 IV n - 2 r 2 | / ? T) denote an element of the in-
£ (lNo-nT' | Gisro-n | lN*~nr') v e r s e o f t h e m a t r i x | |P(Z2ri^-2r21 Znr)||. Then, 

N0—n\ r'Tz 

E P(W"-2r21 /-r)<3(/2r17
w-2r2

/1 inv) 
r 

= ^rir1
/5r2r2

/, (3.11a) 

(T) 

E P(/2ri/"-2r21 /"r)<2(/2iV--2iY | inV) 

= W * r r ' , (3.Hb) 

err 
XP(F»-"r7»-2r2|F('-2r1). (3.7) 

We now assume that, for any value of m, 

(lmT\Gm\lmT)=±(lN^mT\GNo-m\lNo~mT), (3.8) 
T2 

where the sign depends only on the nature of the inter- * / * , (z 11 ) 
action and not on the value of m. This relation is valid r i F l 

for a wide variety of interactions, including the Coulomb M u l t i p l y i n g E q . ( 3 . 1 0 ) b y Q^Y.l^T, \ l«T) and sum-
interaction and the spin-orbit interaction (taken sepa- m i o y e r r r r w e b t ; w i t h ft h d o f ( 3 n ) 

rately). With the help of (3.8) and (2.11) we may write 6 F 

Eq. (3.7) in the form 231 </»r | gre | ; « r ) 12p(/»r) 

(/2r1|G2|;2r1>p(/2r1) / w N / i V o _ w 

CD 
' ) fN0-2\ \2/\ 2 

El</2ri|G21/2ri)12P(/2rx) (3.12) 
E (inr'\Gn\i

nT')P(inT') 
/N0—n\ r 'ry 

X P t f T i / ^ r i ' l / T ' ) . (3.9) 

or 

This relation expresses the two-electron matrix elements a ^ n' ~^7 _ ~. 
as linear combinations of the ^-electron elements, while ( ) 
Eq. (3.6) does just the reverse. \ 2 / 

Multiplying (3.6) by the transpose of Eq. (3.9), we 
obtain which is Moszkowski's formula. 

/n\/No—n\ 

\2/\ 2 
<r*(Gn) = *2(Gz), (3.13) 


